The counteradhesive protein SPARC regulates an endothelial paracellular pathway through protein tyrosine phosphorylation |
| |
Authors: | BA Young P Wang SE Goldblum |
| |
Affiliation: | Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA. |
| |
Abstract: | SPARC (Secreted Protein Acidic and Rich in Cysteine) regulates the transendothelial flux of macromolecules through a paracellular pathway. We now have demonstrated that SPARC-induced increments in albumin flux across postconfluent endothelial cell (EC) monolayers are mediated, in part, through protein tyrosine phosphorylation. SPARC increased tyrosine phosphorylation of EC proteins up to 12-fold within 1 h. The phosphotyrosine-containing proteins were immunolocalized to the intercellular boundaries. Two substrates for SPARC-induced tyrosine phosphorylation were identified as beta-catenin and paxillin. Inhibition of tyrosine kinases with herbimycin A or genistein reversed the barrier dysfunction induced by SPARC by 71% and 49%, respectively. Herbimycin A also protected against SPARC-induced intercellular gap formation. In contrast, inhibition of tyrosine phosphatases with sodium orthovanadate or phenylarsine oxide enhanced the loss of barrier function associated with SPARC treatment by 120% and 88%, respectively. These data indicate that SPARC influences EC-EC interactions through a tyrosine phosphorylation-dependent signaling pathway. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|