首页 | 本学科首页   官方微博 | 高级检索  
     

FastICA遗传神经网络算法
引用本文:许同乐,侯蒙蒙,蔡道勇,薛磊江. FastICA遗传神经网络算法[J]. 北京邮电大学学报, 2014, 37(4): 25-28. DOI: 10.13190/j.jbupt.2014.04.006
作者姓名:许同乐  侯蒙蒙  蔡道勇  薛磊江
作者单位:山东理工大学 机械工程学院, 山东 淄博 255049
基金项目:山东省自然基金项目(ZR2013FM005);山东省高等学校科技计划项目(J10LG22)
摘    要:针对反向传播(BP)算法和基于负熵固定点迭代快速独立分量分析(FastICA)方法各自的优缺点,提出了FastICA遗传神经网络算法,对滚动轴承进行故障识别.首先对信号进行FastICA分离,得到振动信号故障信息的独立分量,每个独立分量对应着相应的能量,将各个独立分量的能量构成特征向量;其次利用遗传算法对BP神经网络的初始权值和阈值进行优化,得到遗传神经网络;最后将特征向量作为遗传神经网络的输入样本进行故障识别.利用该方法对滚动轴承多类故障信号进行识别,提高了故障识别能力.

关 键 词:快速独立分量分析  故障诊断  轴承故障  遗传算法  
收稿时间:2013-11-07

FastICA Genetic Neural Networks Method
XU Tong-le,HOU Meng-meng,CAI Dao-yong,XUE Lei-jiang. FastICA Genetic Neural Networks Method[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4): 25-28. DOI: 10.13190/j.jbupt.2014.04.006
Authors:XU Tong-le  HOU Meng-meng  CAI Dao-yong  XUE Lei-jiang
Affiliation:Mechanical Engineering School, Shandong University of Technology, Zibo Shandong 255049, China
Abstract:Depending on the intrinsic weakness and advantages of back propagation(BP) neural network and Fast Independent Component Analysis(FastICA), a Fast Independent Component Analysis(FastICA) Genetic Neural Networks Method was proposed for fault characteristic signal recognition. The FastICA is used to decompose signals to obtain the independent components successively, each of Independent components corresponding to an energy band, and feature vector of each energy band is used as input sample to optimize neural network. Secondly, the genetic algorithm is used to optimize the weights and thresholds of BP neural network to obtain the Genetic Neural Network. Thirdly,the feature vector is used as input sample of the genetic neural network to identify the fault. Using this method can analysis and identify many kinds of rolling bearings fault signal, and through this method the ability of fault identification isimproved.
Keywords:fast independent component analysis  fault diagnosis  bearing fault  genetic algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号