首页 | 本学科首页   官方微博 | 高级检索  
     


A 10 b 25 MS/s 4.8 mW 0.13 µm CMOS ADC with switched‐bias power‐reduction techniques
Authors:Hee‐Cheol Choi  Young‐Ju Kim  Kyung‐Hoon Lee  Younglok Kim  Seung‐Hoon Lee
Affiliation:Department of Electronic Engineering, Sogang University, #1 Sinsoo‐Dong, Mapo‐Gu, Seoul, 121‐742, Korea
Abstract:This paper proposes a 10 b 25 MS/s 4.8 mW 0.13 µm CMOS analog‐to‐digital converter (ADC) for high‐performance portable wireless communication systems, such as digital video broadcasting, digital audio broadcasting, and digital multimedia broadcasting (DMB) systems, simultaneously requiring a low‐voltage, low‐power, and small chip area. A two‐stage pipeline architecture optimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate, while switched‐bias power‐reduction techniques reduce the power consumption of the power‐hungry analog amplifiers. Low‐noise reference currents and voltages are implemented on chip with optional off‐chip voltage references for low‐power system‐on‐a‐chip applications. An optional down‐sampling clock signal selects a sampling rate of 25 or 10 MS/s depending on applications in order to further reduce the power dissipation. The prototype ADC fabricated in a 0.13 µm 1P8M CMOS technology demonstrates a measured peak differential non‐linearity and integral non‐linearity within 0.42 LSB and 0.91 LSB and shows a maximum signal‐to‐noise‐and‐distortion ratio and spurious‐free dynamic range of 56 and 65 dB at all sampling frequencies up to 25 MHz, respectively. The ADC with an active die area of 0.8 mm2 consumes 4.8 and 2.4 mW at 25 and 10 MS/s, respectively, with a 1.2 V supply. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:ADC  CMOS  DMB  switched bias  low power  power reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号