首页 | 本学科首页   官方微博 | 高级检索  
     


A Conserved Lysine in β‐Lactam Synthetase Assists Ring Cyclization: Implications for Clavam and Carbapenem Biosynthesis
Authors:Mary L. Raber Dr.  Alvaro Castillo  Alexander Greer Dr.  Craig A. Townsend Dr.
Affiliation:1. Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218 (USA), Fax: (+1)?410‐261‐1233;2. Department of Chemistry and Graduate Center and The City University of New York (CUNY), Brooklyn College, Brooklyn, NY 11210 (USA), Fax: (+1)?718‐951‐4607
Abstract:β‐Lactam synthetase (β‐LS) is the paradigm of a growing class of enzymes that form the critical β‐lactam ring in the clavam and carbapenem antibiotics. β‐LS catalyzes a two‐stage reaction in which N2‐(2‐carboxyethyl)‐L ‐arginine is first adenylated, and then undergoes intramolecular ring closure. It was previously shown that the forward kinetic commitment to β‐lactam formation is high, and that the overall rate of reaction is partially limited to a protein conformational change rather than to the chemical step alone of closing the strained ring. β‐Lactam formation was evaluated on the basis of X‐ray crystal structures, site‐specific mutation, and kinetic and computational studies. The combined evidence clearly points to a reaction coordinate involving the formation of a tetrahedral transition state/intermediate stabilized by a conserved Lys. The combination of substrate preorganization, a well‐stabilized transition state and an excellent leaving group facilitates this acyl substitution to account for the strong forward commitment to catalysis and to lower the barrier of four‐membered ring formation to the magnitude of a protein conformational change.
Keywords:beta‐lactam  biosynthesis  clavulanic acid  density functional theory  pH‐rate profiles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号