摘 要: | 建筑自动化技术的广泛应用产生了大量的建筑运行数据。这类数据存在复杂的非线性关系、噪音多、冗余度高,因此建模分析难度较大。采用近100组不同类型建筑的实测数据为研究对象,对其短期能耗进行预测分析,进而形成具有普适性的预测方法。针对整体预测过程,设计了特征工程和预测模型建立两方面内容。在特征工程方面,研究了基于主成分分析和卷积自编码器的线性和非线性特征工程方法。在预测模型建立方面,比较了传统的线性回归、极度梯度提升决策树和神经网络算法。通过分析近100组不同类型建筑的实测数据,量化了相关方法在短期建筑能耗预测中有效性和可靠性。实验结果表明,基于一维卷积自编码器的特征工程方法可以有效提升模型的泛化性能,同时也可加快模型的收敛速度。
|