首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的除尘器故障诊断
引用本文:张力, 李江生, 李建龙, 陈怡潇. 基于神经网络的除尘器故障诊断[J]. 矿业安全与环保, 2020, 47(1): 89-94,99. DOI: 10.19835/j.issn.1008-4495.2020.01.019
作者姓名:张力  李江生  李建龙  陈怡潇
作者单位:1.南昌大学 资源环境与化工学院, 江西 南昌 330031
基金项目:国家自然科学基金项目(51704166);中国博士后科学基金项目;江西省博士后研究人员科研项目(2017KY13)
摘    要:针对目前除尘器故障诊断主要基于人工经验判断并结合停机检查,存在科学性与自动化水平不足、诊断效率低等问题,分析了除尘器滤芯破损、清灰失效、滤芯堵塞、卸灰障碍4个主要故障类型,选取粉尘排放浓度、过滤阻力、入口风量、漏风率、耗气量5个诊断参数,建立了除尘器故障诊断的BP和RBF神经网络预测模型。实例分析表明:BP神经网络模型收敛速度快,预测效果理想,可以准确判断除尘器故障类型,对滤芯破损、清灰失效、滤芯堵塞、卸灰故障的平均预测误差分别为0.035%、0.110%、0.118%、0.215%,预测结果优于RBF神经网络。

关 键 词:除尘器  故障诊断  多参数模型  BP神经网络  RBF神经网络
收稿时间:2019-02-18
修稿时间:2020-01-06

Malfunction diagnoses of dust collector based on neural network
ZHANG Li, LI Jiangsheng, LI Jianlong, CHEN Yixiao. Malfunction diagnoses of dust collector based on neural network[J]. Mining Safety & Environmental Protection, 2020, 47(1): 89-94,99. DOI: 10.19835/j.issn.1008-4495.2020.01.019
Authors:ZHANG Li  LI Jiangsheng  LI Jianlong  CHEN Yixiao
Affiliation:1.School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
Abstract:At present,the malfunction diagnosis of dust collector is mainly based on manual experience judgment and combined with downtime check,which leads to some problems such as low diagnostic efficiency,and lack of science and automation.This paper analyzed four main fault types including filter core damage,ashing failure,filter clogging and ash discharge failure,then selected five diagnostic parameters including dust emission concentration,filtration resistance,inlet air volume,air leakage rate and air consumption to establish BP and RBF neural network prediction model.The example analysis shows that the BP neural network model has fast convergence speed,ideal prediction effect and can accurately judge the fault type of the dust collector.The average prediction model errors of filter core damage,ashing failure,filter clogging and ash discharge failure are 0.035%,0.110%,0.118%,0.215%respectively.The prediction result is better than RBF neural network.
Keywords:dust collector  malfunction diagnosis  multiparameter model  BP neural network  RBF neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《矿业安全与环保》浏览原始摘要信息
点击此处可从《矿业安全与环保》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号