首页 | 本学科首页   官方微博 | 高级检索  
     

支持向量机的快速分类算法
引用本文:徐红敏,王若鹏,张怀念. 支持向量机的快速分类算法[J]. 北京石油化工学院学报, 2009, 17(4): 55-58
作者姓名:徐红敏  王若鹏  张怀念
作者单位:北京石油化工学院数理系,北京,102617;北京石油化工学院数理系,北京,102617;北京石油化工学院数理系,北京,102617
基金项目:北京市自然科学基金会资助项目;项目号:4082012,北京石油化工学院青年基金项目;项目号:N08-26 
摘    要:支持向量机(SVM)算法在训练集的规模很大特别是支持向量很多时,支持向量机的学习过程需要占用大量的内存,算法的速度较慢。为此,笔者提出一种新的SVM快速分类算法。该算法通过选择边界向量,构造新的训练样本,减少了参与训练的样本数目。实验证明,该算法不仅能保证原算法的精度,具有良好的推广能力,而且提高了算法的速度。

关 键 词:支持向量  训练集  边界向量  分类  算法

Fast Classification Algorithm for Support Vector Machine
Xu Hongmin,Wang Ruopeng,Zhang Huainian. Fast Classification Algorithm for Support Vector Machine[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2009, 17(4): 55-58
Authors:Xu Hongmin  Wang Ruopeng  Zhang Huainian
Affiliation:Xu Hongmin Wang Ruopeng Zhang Huainian (Department of Mathematics Physics, Beijing Institute of Petro-chemical Technology, Beijing 102617, China)
Abstract:For support vector machine (SVM), when training set is very large, especially when there are many support vectors, the process of learning requires a great deal of EMS memory, and the speed of count is very slow. In this paper, a new fast classification algorithm is presented to train SVM by selecting border vectors which may be the support vectors, so as to reduce train- ing samples and to increase training speed. Experiment results show that the algorithm not only acquires the same precision with that of the classical algorithms, but also has better performance and is faster than that of the classical algorithms, especially in the case of having large number of training samples.
Keywords:support vector  training set  border vector  classification  algorithm
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号