首页 | 本学科首页   官方微博 | 高级检索  
     


Suppression of gold nanoparticle agglomeration and its separation via nylon membranes
Authors:Ayyavoo Jayalakshmi  In-Chul Kim  Young-Nam Kwon
Affiliation:1.School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea;2.KIST-UNIST Ulsan Center for Convergent Materials, UNIST(Ulsan National Institute of Science and Technology), Korea;3.Environment and Resources Research Center, Korea Research Institute Chemical Technology, Daejeon 305-606, Korea
Abstract:Use of ultraporous nylon membrane is one of the most widely employed techniques for removal of hard and soft nanoparticles in the semiconductor industry,and the accurate determination of membrane pore size is necessary in order to avoid manufacturing defects caused by contamination.The gold nanoparticle has several benefits for the evaluation of polymeric membranes;however,the nanoparticles agglomerate easily on the nylon membrane and make it difficult to evaluate the membrane precisely.The properties of 2-amino-2-hydroxymethyl-1,3-propanediol (ADP) ligand in gold nanoparticle solution were systematically investigated,and ADP was utilized for improved evaluation of the nylon membranes.Nylon membrane used in this study was prepared by phase inversion techniques.Ultrathin dense layer on top of the membrane surface and Darcy structures in the microporous membrane support were observed.The gold particle rejection was carried out at various pH values from 4 to 14 and higher rejection was observed at pH 4 and 8.The suppression of gold colloid agglomeration using ADP and monodispersity of gold colloids was also analyzed by confocal laser scanning microscopy (CLSM),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).van der Waals interaction energy of the particles was reduced in the addition of ADP.The presence ofADP ligand in the gold solutions prevented the agglomeration of gold nanoparticles and reduced the adsorption of the particles on the nylon membrane surface,leading to precise evaluation of membrane pore sizes.
Keywords:Particle size  Electron microscopy  Gold colloid flock  Semiconductor
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号