首页 | 本学科首页   官方微博 | 高级检索  
     


Bread quality of frozen dough substituted with modified tapioca starches
Authors:Megumi Miyazaki  Tomoko Maeda  Naofumi Morita
Affiliation:(1) Laboratory of Food Chemistry, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan;(2) Central Laboratory, Yamazaki Baking Co., Ltd, 3-15-6, Chitose, Sumida-ku, Tokyo 130-0025, Japan;(3) Department of Life and Health Sciences, Hyogo University of Teacher Education, 942-1 Shimokume, Hyogo 673-1494, Japan
Abstract:Rheological properties of dough and bread quality of frozen dough-bread containing 18.4% of hydroxypropylated (HTS), acetylated (ATS), and phosphorylated cross-linked (PTS) tapioca starch with different degrees of modification and 1.6% of dried powdered gluten were compared to the same amount of native tapioca starch (NTS) or wheat flour-bread. Doughs substituted with native or modified tapioca starches had the same mixing tolerance as 100% wheat flour. The dough was frozen and stored for 1 week at −18°C, and thawed (one freeze-cycle). The amount of freezable water in the dough substituted with native or modified tapioca starches was not significantly different from that of wheat flour. Frozen dough-bread substituted with highly modified HTS (degree of substitution; DS 0.09–0.11) retarded bread staling, while lowly modified HTS (DS 0.06–0.07) or ATS (DS 0.02–0.04), and PTS (0.004–0.020% phosphoryl content) substitution fastened bread staling as compared with frozen dough-bread baked from wheat flour. The breadcrumbs containing HTS and ATS felt tacky, whereas the bread containing PTS was dry feel. HTS and ATS swelled and collapsed easily during heating, while PTS was difficult to swell and disperse as compared with NTS, therefore the gelatinization properties seemed to affect the texture of bread. Breadcrumb containing HTS showed small firmness during storage, and highly modified HTS-h (DS 0.1) was the smallest. This means highly hydroxypropylated tapioca starch significantly retards bread staling. Staling properties and texture of frozen dough-bread with various tapioca starches were the same as conventional bread baked with the same amount of tapioca starches. These results suggest that a one freeze–thaw cycle and a 1-week frozen period do not change characteristics of starch, gelatinization and retrogradation properties as compared with the conventional method, and the highly modified HTS-h is prominent anti-staling food-stuff in frozen dough.
Keywords:Frozen dough  Hydroxypropylated tapioca starch  Phosphorylated cross-linked tapioca starch  Acetylated tapioca starch
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号