首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of potent antioxidant bioactive peptides from goat milk proteins
Affiliation:1. Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890–0065, Japan;2. Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;3. Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
Abstract:Goat milk proteins have gained increasing attention especially the bioactive peptides released from the parent proteins by digestive enzymes. Specifically, the interest in bioactives of goat milk is intensifying due to its reduced allergenicity compared to bovine milk. In this study, proteins of goat milk were fractionated into caseins (GCP) and whey proteins (GWP), hydrolyzed by pepsin and the generated peptides were examined for radical scavenging activities. The hydrolysates of whey (P-GWP) and casein (P-GCP) proteins exhibited potent superoxide anion (O2・−) scavenging activity in a dose-dependent manner, as investigated using the natural xanthine/xanthine oxidase (X/XOD) system. The P-GWP and P-GCP dramatically quenched the O2・− flux but had negligible effect on the catalytic function of the enzyme, indicating specificity to scavenge O2・− but not oxidase inhibition. Further, both P-GWP and P-GCP were able to remarkably quench the chemical DPPH radical. Fractionation of hydrolysates by size-exclusion chromatography produced four fractions (F1-F4) from both hydrolysates, with variable O2・− scavenging activities. However, the slow eluting fractions (F4) of both hydrolysates and fast eluting fraction (F2) of P-GCP contained peptides with the highest scavenging activities. Peptides in the active fractions of P-GWP and P-GCP, isolated by reversed phase-HPLC, exhibited significantly strong O2・− scavenging activities. MALDI-TOF-MS allowed the identification of several antioxidant peptides derived from both caseins and whey proteins, with β-casein and β-lactoglobulin being the major contributors, respectively. The results demonstrate that digestion with pepsin generates multiple soluble peptides from goat milk protein fractions with remarkable ability to scavenge superoxide radicals and thus providing a fascinating opportunity for their potential candidacy as antioxidant bioactive peptides.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号