首页 | 本学科首页   官方微博 | 高级检索  
     


A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression
Affiliation:1. Composites Entity, Vikram Sarabhai Space Centre, India;2. Department of Applied Mechanics, Indian Institute of Technology Madras, India;1. Università degli Studi della Campania “Luigi Vanvitelli”, Department of Industrial and Information Engineering, via Roma n 29, 81031 Aversa, Italy;2. Airbus, Kreetslag 10, 21129 Hamburg, Germany
Abstract:In this paper, a numerical study on skin–stringer debonding growth in stiffened composite panels has been carried out. A novel numerical methodology is proposed here to investigate the compressive behaviour of a stiffened composite panel in the presence of skin–stringer partial separation. The novel numerical methodology, able to overcome the mesh size and time increment dependency of the standard Virtual Crack Closure Technique (VCCT), is an evolution of a previously developed and tested numerical approach for the circular delaminations growth. The enhancements, with respect to the previously developed approach, rely mainly in the capability to deal with the different defect shapes characterising a skin–stringer debonding. The proposed novel methodology has been implemented in a commercial finite element platform and tested over single stiffener composite panels. The effectiveness of the suggested numerical methodology, in predicting the compressive behaviour of stiffened panels with skin stringer debondings, has been preliminary confirmed by comparisons, in terms of load versus applied displacement and debonding size at failure, with literature experimental data and numerical results obtained with the standard VCCT approach.
Keywords:A  Laminates  B  Debonding  C  Damage mechanics  C  Finite Element Analysis (FEA)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号