首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of Fe(3)O(4)-CoO/Al(2)O(3) catalytic ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid
Authors:Tong Shao-Ping  Shi Rui  Zhang Hua  Ma Chun-An
Affiliation:College of Chemical Engineering and Materials Science, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China. sptong@zjut.edu.cn
Abstract:The presence of Fe(3)O(4)-CoO/Al(2)O(3) can improve degradation efficiency significantly during the ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The main factors affecting degradation efficiency, such as pH, the catalyst concentration and addition of the scavenger, were investigated. The kinetics of the catalytic ozonation are also discussed. The results indicate that two factors, the oxidation after adsorption of 2,4-DP and the oxidation of hydroxyl radicals (OH), lead to a great enhancement in ozonation efficiency during the catalytic ozonation of 2,4-DP in the presence of Fe(3)O(4)-CoO/Al(2)O(3), in which the oxidation of the OH plays an important role. Under controlled conditions, the apparent reaction rate constants for the degradation of 2,4-DP were determined to be 2.567 × 10(-4)s(-1) for O(3) and 1.840 × 10(-3)s(-1) for O(3)/Fe(3)O(4)-CoO/Al(2)O(3). The results from the analysis of the reaction kinetics using the relative method showed that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) possessed a larger R(ct) (R(ct) is defined as the ratio of the ·OH exposure to the O(3) exposure, R(ct) = ∫C(t)(OH) dt/C(t)O(3)dt) than O(3), indicating that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) produced more hydroxyl radicals.
Keywords:Catalytic ozonation  Fe3O4–CoO/Al2O3  2  4-DP  Pseudo-first-order  Kinetics
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号