摘 要: | 闭环检测是视觉SLAM中很重要的一部分,成功地检测出闭环能减小定位算法所产生的累积里程漂移.鉴于深度卷积神经网络在分类问题上的优越表现,本文首次将应用于图像分类的vgg16-places365卷积神经网络模型应用于视觉SLAM闭环检测中,将配准数据输入训练好的该卷积神经网络,其各个隐藏层的输出对应于图像特征表示.然后通过实验比较选用匹配精度较高的中间层完成场景特征提取,通过计算场景特征的相似性得到闭环区域.最后在闭环检测数据集上进行实验测试.测试结果表明,相比于传统的闭环检测方法,vgg16-places365卷积神经网络模型在相同召回率条件下准确率要高约3%;对于特征提取时间,在CPU上要快约5~10倍,而在GPU上更是比传统人工设计特征的闭环检测快近100倍.
|