首页 | 本学科首页   官方微博 | 高级检索  
     

并行最小割算法及其在金融社交网络中的应用
引用本文:饶东宁,王军星,魏来,王雅丽. 并行最小割算法及其在金融社交网络中的应用[J]. 广东工业大学学报, 2018, 35(2): 46-50. DOI: 10.12052/gdutxb.170146
作者姓名:饶东宁  王军星  魏来  王雅丽
作者单位:1. 广东工业大学 计算机学院, 广东 广州 510006;2. 香港大学 经济与金融学院, 中国 香港 999077;3. 华南师范大学 经济与管理学院, 广东 广州 510631
基金项目:中央高校基本科研业务费专项资金资助项目(21615438);广东省自然科学基金资助项目(2016A030313084,2016A030313700,2014A030313374);广东省科技计划项目(2015B010128007)
摘    要:有效实施金融监管已成为金融健康发展的必要保证. 若能够在金融社交网络中,找到一部分承载网络中所有信息流动的关键节点,便能实现整个金融社交网络的有效监管. 金融社交网络图规模通常较大,须开发大规模图处理并行算法. 本文提出基于分布式图处理平台Pregel的并行最小割算法. 实验基于Apache Spark平台开展,所用数据均来自BoardEx数据库. 实验结果表明,在大规模社交网络图的处理中,该算法具有良好性能. 利用该并行算法得到金融社交网络图的最小割,便可有效实施金融监管.

关 键 词:大数据  社交网络  并行算法  最小割  Apache Spark  
收稿时间:2017-10-16

Parallel Minimal Cut Set Algorithm and Its Application in Financial Social Networks
Rao Dong-ning,Wang Jun-xing,Wei lai,Wang Ya-li. Parallel Minimal Cut Set Algorithm and Its Application in Financial Social Networks[J]. Journal of Guangdong University of Technology, 2018, 35(2): 46-50. DOI: 10.12052/gdutxb.170146
Authors:Rao Dong-ning  Wang Jun-xing  Wei lai  Wang Ya-li
Affiliation:1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China;2. School of Economics and Finance, The University of Hong Kong, Hong Kong 999077, China;3. School of Economics and Management, South China Normal University, Guangzhou 510631, China
Abstract:Effective financial supervision has become a necessary guarantee for sound development of economy. Supervising the whole financial social network effectively would become possible if a set of key nodes which carry all the information flow in the financial social network can be found. The scale of social network is often quite large, so parallel algorithms for large-scale graph processing are necessary. A Pregel-based parallel algorithm for the minimal cut set problem is proposed. The experiment is conducted on Apache Spark platform. All data used in the experiment is from the BoardEx database. Experiment results show that the algorithm has a good performance in large-scale social network graph processing. With this parallel algorithm, minimal cut sets of financial social network graphs can be obtained so that effective financial supervision can be implemented.
Keywords:Big data  social network  parallel algorithm  minimal cut set  Apache Spark  
点击此处可从《广东工业大学学报》浏览原始摘要信息
点击此处可从《广东工业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号