Phase transition behavior and electrical properties of lead-free (1 − x)(0.98K0.5Na0.5NbO3–0.02LiTaO3)–x(0.96Bi0.5Na0.5TiO3–0.04BaTiO3) piezoelectric ceramics |
| |
Authors: | Yejing Dai Xiaowen Zhang |
| |
Affiliation: | aThe State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China |
| |
Abstract: | Lead-free piezoelectric ceramics (1 − x)(0.98K0.5Na0.5NbO3–0.02LiTaO3)–x(0.96Bi0.5Na0.5TiO3–0.04BaTiO3) (KNN–LT–BNT–BT) with x = 0–0.10 have been synthesized by a conventional sintering technique. All samples possess pure perovskite structure, showing room temperature symmetries of orthorhombic at x < 0.02, and tetragonal at 0.05 ≤ x ≤ 0.10. A coexistence of orthorhombic and tetragonal phases in the composition range of 0.02 ≤ x < 0.05 in this system is caused by the temperature of the polymorphic phase transition (PPT) decreasing to around room temperature but not the behavior of the morphotropic phase boundary (MPB). The samples near the coexistence region exhibit improved properties, which are as follows: piezoelectric constant d33 = 155 pC/N, remnant polarization Pr = 24.2 μC/cm2, and coercive electric field Ec = 2 kV/mm. The results indicate that although this kind of ceramics displays good properties, further study is needed to promote the stabilities of the ceramics in order to utilize them in varying temperature environments. |
| |
Keywords: | Dielectric properties Ferroelectric properties Piezoelectric properties Perovskites Lead-free ceramics |
本文献已被 ScienceDirect 等数据库收录! |
|