首页 | 本学科首页   官方微博 | 高级检索  
     

云计算平台的海量数据知识提取框架
引用本文:邹裕. 云计算平台的海量数据知识提取框架[J]. 计算机系统应用, 2016, 25(11): 216-220
作者姓名:邹裕
作者单位:东莞理工学院 计算机学院, 东莞 523808
基金项目:广东省自然科学基金(S2013010011858);广东省高校优秀青年创新人才培养计划(2012LYM0125)
摘    要:针对从海量数据中分析与提取知识计算时间高的问题,提出一种基于Hadoop的知识提取算法.本文结合Hadoop的并行处理能力与分布式存储特点,设计了一种知识提取框架,可兼容不同的原型约简方法.基于MapReduce编程方法将约简方法并行化处理,并且设计了分类准确率高、计算速度快的原型约简组合规则.最终基于真实UCI大数据集进行实验,本框架将最近邻分类器的分类时间提高两个数量级.

关 键 词:海量数据  知识提取  原型约简  云计算  并行计算  数据聚类
收稿时间:2016-02-29
修稿时间:2016-04-08

Massive Data Knowledge Extraction Framework Based on Cloud Computing Platform
ZOU Yu. Massive Data Knowledge Extraction Framework Based on Cloud Computing Platform[J]. Computer Systems& Applications, 2016, 25(11): 216-220
Authors:ZOU Yu
Affiliation:College of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China
Abstract:Aimed at problem that analyzing and extracting knowledge form massive data is high computation cost, a Hadoop based knowledge extraction framework is proposed. We designe a knowledge exraction framework which combines with the parallel processing and distributed storage feature, and the framework is compatible different prototype reduction methods. Based on the MapReduce programming method the prototype reduction method is parallelly processed, and a prototype reduction combination rule with high classification accuracy and computational speed is designed. Finally, experiments results based on real UCI big data sets show that the proposed framework improves two orders of magnitude of the classification time of the nearest neighbor classifier.
Keywords:massive data  knowledge extraction  prototype reduction  cloud computing  parallel computing  data clustering
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号