首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Precrack "Halos" on Fracture Toughness Determined by the Surface Crack in Flexure Method
Authors:Jeffrey J Swab  George D Quinn
Affiliation:Metals and Ceramics Research Branch, Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005;Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Abstract:The surface crack in flexure method, which is used to determine the fracture toughness of dense ceramics, necessitates the measurement of precrack sizes by fractographic examination. Stable crack extension may occur from flaws under ambient, room-temperature conditions, even in the relatively short time under load during fast fracture strength or fracture toughness testing. In this article, fractographic techniques are used to characterize evidence of stable crack extension, a "halo," around Knoop indentation surface cracks. Optical examination of the fracture surfaces of a high-purity Al2O3, an AlN, a glass-ceramic, and a MgF2 reveal the presence of a halo around the periphery of each precrack. The halo in the AlN is merely an optical effect due to crack reorientation, whereas the halo in the MgF2 is due to indentation-induced residual stresses initiating crack growth. However, for the Al2O3 and the glass-ceramic, environmentally assisted slow crack growth is the cause of the halo. In the latter two materials, this stable crack extension must be included as part of the critical crack size to determine the appropriate fracture toughness.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号