首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于支持向量机的转子振动故障融合诊断技术
作者姓名:
艾延廷
费成巍
摘 要:
针对某些大型复杂旋转机械振动信号特征提取和故障样本获取难的问题,提出了一种基于小波包特征谱熵支持向量机(SVM)的转子振动故障融合诊断方法.通过转子实验台模拟了转子振动的4种典型故障,并采集其振动故障数据.用小波包对振动故障信号进行分解,提取故障信息含量大的频带并计算出其小波特征谱熵作为故障特征,建立故障诊断模型.通过对故障类别的区分和故障严重程度的判断,验证了该方法在解决转子振动故障信号的特征提取及小样本情况下的故障诊断问题等方面是有效的.
关 键 词:
小波包
空间特征谱熵
支持向量机(SVM)
转子振动
振动实验
特征提取
故障诊断
信息融合
点击此处可从《沈阳工业大学学报》浏览原始摘要信息
点击此处可从《沈阳工业大学学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号