首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum-critical Pairing with Varying Exponents
Authors:Eun-Gook Moon  Andrey Chubukov
Affiliation:1. Department of Physics, Harvard University, Cambridge, MA, 02138, USA
2. Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
Abstract:We analyze the onset temperature T p for the pairing in cuprate superconductors at small doping, when tendency towards antiferromagnetism is strong. We consider the model of Moon and Sachdev (MS), which assumes that electron and hole pockets survive in a paramagnetic phase. Within this model, the pairing between fermions is mediated by a gauge boson, whose propagator remains massless in a paramagnet. We relate the MS model to a generic γ-model of quantum-critical pairing with the pairing kernel $\lambda(\Omega_{n})\propto1/\Omega^{\gamma}_{n}$ . We show that, over some range of parameters, the MS model is equivalent to γ=1/3-model (λ(Ω)∝Ω?1/3). We find, however, that the parameter range where this analogy works is bounded on both ends. At larger deviations from a magnetic phase, the MS model becomes equivalent to γ model with varying γ>1/3, whose value depends on the distance to a magnetic transition and approaches γ=1 deep in a paramagnetic phase. Very near the transition, the MS model becomes equivalent to γ model with varying γ<1/3. Right at the magnetic QCP, the MS model is equivalent to the model with λ n )∝log?Ω n , which is the model for color superconductivity. Using this analogy, we verify the formula for T c derived for color superconductivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号