首页 | 本学科首页   官方微博 | 高级检索  
     


Neurotransmitter-induced novel modulation of a nonselective cation channel by a cAMP-dependent mechanism in rat pineal cells
Authors:N Darvish  JT Russell
Affiliation:Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract:In the rat, circadian rhythm in melatonin is regulated by noradrenergic and neuropeptide inputs to the pineal via adenosine 3',5'-cyclic monophosphate (cAMP)- and Ca2+-dependent mechanisms. We have identified a large conductance (170 pS), voltage-dependent, nonselective cation channel on rat pineal cells in culture that shows a novel mode of modulation by cAMP. Pituitary adenylate cyclase activating peptide (PACAP), norepinephrine, or 8-Br-cAMP increase channel open probability (Po) with a hyperpolarizing shift in voltage dependence such that the channel becomes active at resting membrane potentials. The increase in Po was accompanied by a change in current rectification properties such that the channel was transformed from being inactive at rest to an inwardly rectifying cation conductance in the presence of agonist, which depolarizes the cell. This channel is calcium insensitive, is blocked by Cs+, and shows a permeability sequence: K+ > Na+ >/= NH+4 > Li+. The data suggest that PACAP and norepinephrine acting through a cAMP-dependent mechanism modulate this nonselective cation channel, resulting in a slow onset depolarization that may be important in regulation of pineal cell excitability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号