首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting the tensile strength of natural fibre reinforced thermoplastics
Affiliation:1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Canada M5S 3E5;2. Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, Canada M5S 3B3;1. Faculty of Forestry, University of Toronto, 33 Willcocks St., Toronto, ON M5S3B3, Canada;2. Dept. of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S3E5, Canada;1. Clausthal Centre of Materials Engineering, Clausthal University of Technology, Agricola Str. 2, D-38678, Germany;2. Design and Production Engineering Department, Ain Shams University, Cairo, Egypt;3. Institute of Polymer Materials and Plastics Engineering, Clausthal University of Technology, Agricola Str. 6, D-38678, Germany;4. BADA AG, Untere Strut 1, D-77815 Bühl, Baden, Germany;1. HSB-Hochschule Bremen / City University of Applied Sciences Bremen, Faculty 5, Biomimetics- The Biological Materials Group, Neustadtswall 30, D-28199, Bremen, Germany;2. INRA, Université de Reims Champagne-Ardenne, 51100, Reims, France;3. Plastics Technology Centre-AIMPLAS, Composites Department, Valencia, Spain;4. Terre de Lin, 605 route de la Vallée, 76740, saint Pierre le Viger, France;5. Linéa Semences de Lin, 20 Avenue Saget, 60210, Grandvilliers, France;6. Univ. Lille, CNRS, UMR 8576–UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France;7. Limagrain Nederland BV, Postbus 1, 4410 AA, Rilland, The Netherlands;8. University of British Columbia, Okanagan campus, Department of Biology, Kelowna, V1 V 1V7, Canada;1. Lab. of Adhesion & Bio-Composites, Program in Environmental Materials Science, Seoul National University, Seoul 151-921, Republic of Korea;2. Cassava and Starch Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Bangkok 10900, Thailand;3. Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea;4. Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Department of Biotechnology, Kasetsart University, Bangkok 10900, Thailand;5. Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
Abstract:The tensile strength of short natural fibre reinforced thermoplastics (NFRT) was modeled using a modified rule of mixtures (ROM) strength equation. A clustering parameter, requiring the maximum composite fibre volume fraction, forms the basis of the modification. The clustering parameter highlights that as fibre loading increases, the available fibre stress transfer area is decreased. Consequently, at high volume fractions this decrease in stress transfer area increases the brittleness of the short fibre composite and decreases the tensile strength of the material. A key parameter, the interfacial shear strength, was determined by fitting the micromechanical strength model to tensile strength data at low fibre loading (10 wt%) where there is minimal fibre clustering.To test the modified ROM strength model, compression molded specimens of high-density polyethylene (HDPE) reinforced with hemp fibres, hardwood fibres, rice hulls, and E-glass fibres were created with fibre mass fractions of 10–60 wt%. The modified ROM strength model was found to adequately predict the tensile strength of the various composite specimens.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号