Predictive models for multibiometric systems |
| |
Authors: | Suresh Kumar Ramachandran Nair Bir Bhanu Subir Ghosh Ninad S. Thakoor |
| |
Affiliation: | 1. Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA;2. Department of Statistics, University of California, Riverside, CA 92521, USA |
| |
Abstract: | Recognizing a subject given a set of biometrics is a fundamental pattern recognition problem. This paper builds novel statistical models for multibiometric systems using geometric and multinomial distributions. These models are generic as they are only based on the similarity scores produced by a recognition system. They predict the bounds on the range of indices within which a test subject is likely to be present in a sorted set of similarity scores. These bounds are then used in the multibiometric recognition system to predict a smaller subset of subjects from the database as probable candidates for a given test subject. Experimental results show that the proposed models enhance the recognition rate beyond the underlying matching algorithms for multiple face views, fingerprints, palm prints, irises and their combinations. |
| |
Keywords: | Object recognition Biometrics Modeling and prediction Statistical models |
本文献已被 ScienceDirect 等数据库收录! |
|