首页 | 本学科首页   官方微博 | 高级检索  
     


Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability
Authors:Dominic Kehren  Astrid Catalina Molano LopezAndrij Pich
Affiliation:Functional and Interactive Polymers, DWI RWTH Aachen University, Forckenbeckstr. 50, D-52056 Aachen, Germany
Abstract:In this work we prepared composite poly(caprolactone) (PCL) microfibres decorated with temperature-sensitive poly(N-vinylcaprolactam) nanogels by an one-step electropsinning process. Microfibres with variable internal structure were prepared by using two different solvent systems: methanol/toluene (Me/Tol) and chloroform/dimethylformamide (Ch/DMF). Our experimental data shows that the nature of the solvent mixtures allows obtaining microfibres with different morphologies: Microfibres with nanogels on the fibre surface (Me/Tol) and microfibres with nanogels in the fibre interior (Ch/DMF). The morphology of composite fibres was visualized by scanning electron microscopy (SEM) and their properties investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and contact angle measurements. The results show that combining hydrophobic poly(caprolactone) with hydrophilic nanogels leads to microfibres exhibiting controlled swelling in water. Additionally, the thermo-sensitive properties of the nanogels are maintained whether they are on the surface or inside of the fibres. The presence of nanogels in the fibre structure also allows regulating their degradability.
Keywords:Nanogels  Electrospinning  Composite material
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号