首页 | 本学科首页   官方微博 | 高级检索  
     


ECOC-DRF: Discriminative random fields based on error correcting output codes
Authors:Francesco Ciompi  Oriol Pujol  Petia Radeva
Affiliation:1. Radboud University Medical Center, Nijmegen, The Nederlands;2. Dept. de Matemàtica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain;3. Computer Vision Center, Campus UAB, Bellaterra, Spain
Abstract:We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.
Keywords:Discriminative random fields   Error-correcting output codes   Multi-class classification   Graphical models
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号