首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate junction detection and characterization in line-drawing images
Authors:The-Anh Pham  Mathieu Delalandre  Sabine Barrat  Jean-Yves Ramel
Affiliation:1. Laboratory of Computer Science (LI), Francois Rabelais University, Tours city, France;2. Hong Duc University, Thanh Hoa city, Vietnam
Abstract:In this paper, we present a new approach for junction detection and characterization in line-drawing images. We formulate this problem as searching for optimal meeting points of median lines. In this context, the main contribution of the proposed approach is three-fold. First, a new algorithm for the determination of the support region is presented using the linear least squares technique, making it robust to digitization effects. Second, an efficient algorithm is proposed to detect and conceptually remove all distorted zones, retaining reliable line segments only. These line segments are then locally characterized to form a local structure representation of each crossing zone. Finally, a novel optimization algorithm is presented to reconstruct the junctions. Junction characterization is then simply derived. The proposed approach is very highly robust to common geometry transformations and can resist a satisfactory level of noise/degradation. Furthermore, it works very efficiently in terms of time complexity and requires no prior knowledge of the document content. Extensive evaluations have been performed to validate the proposed approach using other baseline methods. An application of symbol spotting is also provided, demonstrating quite good results.
Keywords:Junction detection   Junction characterization   Dominant point detection   Graphical documents   Line-drawings
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号