A thermodynamic database for copper smelting and converting |
| |
Authors: | Sergei A. Degterov Arthur D. Pelton |
| |
Affiliation: | (1) the Centre, de Recherche en Calcul Thermochimique, Ecole Polytechnique de Montreal, H3C 3A7 Montreal, PQ, Canada |
| |
Abstract: | The thermodynamic properties of the slag, matte, and liquid copper phases in the Cu-Ca-Fe-Si-O-S system have been critically assessed and optimized over the ranges of compositions of importance to copper smelting/converting based on thermodynamic and phase equilibria information available in the literature and using the modified quasichemical model. A thermodynamic database has been developed, which can be used for the calculation of matte-slag-copper-gas phase equilibria of interest for the production of copper. The model reproduces within experimental error limits all available experimental data on phase diagrams, matte-alloy miscibility gap and tie-lines, enthalpies of mixing, and activities of Cu and S in the matte and liquid alloy. The calculated solubilities of Cu in both S-free slag and slag equilibrated with matte are also in good agreement with experiment under all studied conditions, such as at SiO2 saturation, in equilibrium with Fe, Cu, or Cu-Au alloys, at fixed oxygen or SO2 partial pressures and at different contents of CaO in the slag. Sulfide contents (sulfide capacities) of the slags are predicted within experimental error limits from the modified Reddy-Blander model, with no adjustable parameters. As an example of the application of the database, the stability field of matte/slag equilibrium is calculated, and the matte and slag compositions are plotted vs iron to silica ratio in the slag at various SO2 pressures over this field. The matte-slag two-phase field is limited by the calculated lines corresponding to precipitation of copper, silica, and magnetite. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|