首页 | 本学科首页   官方微博 | 高级检索  
     


3D Printed Solutions for Spheroid Engineering and Cancer Research
Authors:Tobias Butelmann  Yawei Gu  Aijun Li  Fabian Tribukait-Riemenschneider  Julius Hoffmann  Amin Molazem  Ellen Jaeger  Diana Pellegrini  Aurelien Forget  V Prasad Shastri
Affiliation:1.Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (T.B.); (Y.G.); (A.L.); (F.T.-R.); (J.H.); (A.M.); (E.J.); (D.P.); (A.F.);2.BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
Abstract:In multicellular organisms, cells are organized in a 3-dimensional framework and this is essential for organogenesis and tissue morphogenesis. Systems to recapitulate 3D cell growth are therefore vital for understanding development and cancer biology. Cells organized in 3D environments can evolve certain phenotypic traits valuable to physiologically relevant models that cannot be accessed in 2D culture. Cellular spheroids constitute an important aspect of in vitro tumor biology and they are usually prepared using the hanging drop method. Here a 3D printed approach is demonstrated to fabricate bespoke hanging drop devices for the culture of tumor cells. The design attributes of the hanging drop device take into account the need for high-throughput, high efficacy in spheroid formation, and automation. Specifically, in this study, custom-fit, modularized hanging drop devices comprising of inserts (Q-serts) were designed and fabricated using fused filament deposition (FFD). The utility of the Q-serts in the engineering of unicellular and multicellular spheroids-synthetic tumor microenvironment mimics (STEMs)—was established using human (cancer) cells. The culture of spheroids was automated using a pipetting robot and bioprinted using a custom bioink based on carboxylated agarose to simulate a tumor microenvironment (TME). The spheroids were characterized using light microscopy and histology. They showed good morphological and structural integrity and had high viability throughout the entire workflow. The systems and workflow presented here represent a user-focused 3D printing-driven spheroid culture platform which can be reliably reproduced in any research environment and scaled to- and on-demand. The standardization of spheroid preparation, handling, and culture should eliminate user-dependent variables, and have a positive impact on translational research to enable direct comparison of scientific findings.
Keywords:tumor spheroids  hanging drop device  3D printing  bioprinting  automation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号