首页 | 本学科首页   官方微博 | 高级检索  
     


Application of profiled ejector in chemical lasers
Authors:Gaurav Singhal  AL Dawar  PMV Subbarao  
Affiliation:aLaser Science and Technology Center, Metcalfe House, Delhi 54, India;bIndian Institute of Technology, Delhi 16, India
Abstract:Recently, the use of profiled ejectors based on constant rate of momentum change I.W. Eames, Applied Thermal Engineering 22 (2002) 121] along the mixing chamber has been proposed for enhancing the recovery ratio across an ejector stage by minimizing shock losses for application in ejector based refrigeration system. Such ejectors can achieve pressure recovery ratio in excess of 150, thus making the system a compact one. Chemical lasers in general and chemical oxygen-iodine laser (COIL) in particular fall in the high power lasers category and find numerous applications in defense and industry. However, these lasers have not been exploited fully because these require pressure recovery systems for their operation and as such the practical systems are extremely voluminous and bulky. The profiled ejectors find direct applications in these lasers and thus can make the system extremely compact. The conventional supersonic COIL systems operate at a typical stagnation pressure of nearly 20 torr and a cavity static pressure of approximately 3 torr, which are amongst the lowest in the class of chemical lasers. Thus, a low-pressure operation of the laser system demands a high capacity vacuum system. Alternatively, efficient ejector based pressure recovery system has been utilized for achieving direct atmospheric exhaust of the lasing medium. However, a minimum of two-stage conventional supersonic ejectors need to be employed for the operation of the laser system. Multiple stages of the ejector are essential on account of the stagnation pressure loss occurring across a normal shock at the exit of the mixing chamber in each ejector stage. The present study presents a general treatment on the design of a profiled ejector for the case of dissimilar motive and suction fluids that are typical of these lasers. Also, determinations for the increase in recovery ratio for various conditions of entrainment ratio over the conventional ejectors have also been presented. Finally, a computational study using McCormack’s method for Euler system of equations has been carried out to numerically validate the analytical studies for a peripheral air ejector system suitable for a 500 W class COIL employing a flow rate of not, vert, similar3 gm/s with an entrainment ratio of 0.025. It has been concluded that a single-stage profiled ejector is sufficient to achieve atmospheric pressure recovery even in the low-pressure systems.
Keywords:COIL  MacCormack method  Constant rate of momentum change  Profiled ejector
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号