首页 | 本学科首页   官方微博 | 高级检索  
     

融合语义主题的图像自动标注
引用本文:李志欣,施智平,李志清,史忠植. 融合语义主题的图像自动标注[J]. 软件学报, 2011, 22(4): 801-812. DOI: 10.3724/SP.J.1001.2011.03742
作者姓名:李志欣  施智平  李志清  史忠植
作者单位:1. 中国科学院,计算技术研究所,智能信息处理重点实验室,北京,100190;中国科学院,研究生院,北京,100049
2. 中国科学院,计算技术研究所,智能信息处理重点实验室,北京,100190
基金项目:国家自然科学基金(60933004, 60903141, 60805041); 国家重点基础研究发展计划(973)(2007CB311004)
摘    要:由于语义鸿沟的存在,图像自动标注已成为一个重要课题.在概率潜语义分析的基础上,提出了一种融合语义主题的方法以进行图像的标注和检索.首先,为了更准确地建模训练数据,将每幅图像的视觉特征表示为一个视觉"词袋";然后设计一个概率模型分别从视觉模态和文本模态中捕获潜在语义主题,并提出一种自适应的不对称学习方法融合两种语义主题.对于每个图像文档,它在各个模态上的主题分布通过加权进行融合,而权值由该文档的视觉词分布的熵值来确定.于是,融合之后的概率模型适当地关联了视觉模态和文本模态的信息,因此能够很好地预测未知图像的语义标注.在一个通用的Corel图像数据集上,将提出的方法与几种前沿的图像标注方法进行了比较.实验结果表明,该方法具有更好的标注和检索性能.

关 键 词:图像自动标注  主题模型  概率潜语义分析  自适应不对称学习  图像检索
收稿时间:2009-05-13
修稿时间:2009-10-10

Automatic Image Annotation by Fusing Semantic Topics
LI Zhi-Xin,SHI Zhi-Ping,LI Zhi-Qing and SHI Zhong-Zhi. Automatic Image Annotation by Fusing Semantic Topics[J]. Journal of Software, 2011, 22(4): 801-812. DOI: 10.3724/SP.J.1001.2011.03742
Authors:LI Zhi-Xin  SHI Zhi-Ping  LI Zhi-Qing  SHI Zhong-Zhi
Affiliation:Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China;Graduate University, The Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China;Graduate University, The Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China
Abstract:Automatic image annotation has become an important issue, due to the existence of a semantic gap. Based on probabilistic latent semantic analysis (PLSA), this paper presents an approach to annotate and retrieve images by fusing semantic topics. First, in order to precisely model training data, each image is represented as a bag of visual words. Then, a probabilistic model is designed to capture latent semantic topics from visual and textual modalities, respectively. Furthermore, an adaptive asymmetric learning approach is proposed to fuse these semantic topics. For each image document, the topic distribution of each modality is fused by multiplying different weights, which is determined by the entropy of the distribution of visual words. Consequently, the probabilistic model can predict semantic annotations for an unseen image because it associates visual and textual modalities properly. This approach is compared with several other state-of-the-art approaches on a standard Corel dataset. The experimental results show that this approach performs more effectively and accurately.
Keywords:automatic image annotation   topic model   probabilistic latent semantic analysis   adaptive asymmetric learning   image retrieval
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号