首页 | 本学科首页   官方微博 | 高级检索  
     

基于ICA/SVM的混合学习方法及在人脸检测中的应用
引用本文:武妍,吴桂云. 基于ICA/SVM的混合学习方法及在人脸检测中的应用[J]. 计算机工程与应用, 2004, 40(36): 87-89,101
作者姓名:武妍  吴桂云
作者单位:同济大学计算机科学与工程系,上海,200092;同济大学计算机科学与工程系,上海,200092
基金项目:国家自然科学基金重点项目资助(编号:60135010)
摘    要:从基于样本学习的方法框架出发,该文提出了一种基于独立元分析和支持向量机的混合的学习方案,并用于人脸检测中。该方法通过独立元分析方法进行特征提取,然后采用SVM进行分类。该文做了大量的实验,以确定如独立元个数等参数问题对该分类器的影响,并与单独的支持矢量机方法、其它的人脸检测方法进行了比较分析。实验结果表明,该文的方法具有较好的检测效果,是一种很有效的方法。

关 键 词:ICA SVM  学习  人脸检测
文章编号:1002-8331-(2004)36-0087-03

Hybrid Learning Scheme Based on ICA/SVM and its Application in Face Detection
Wu Yan Wu Guiyun. Hybrid Learning Scheme Based on ICA/SVM and its Application in Face Detection[J]. Computer Engineering and Applications, 2004, 40(36): 87-89,101
Authors:Wu Yan Wu Guiyun
Abstract:Starting from the frame of method based on learning sample,a hybrid learning scheme based on independent component analysis and support vector machine is proposed and used in face detection.In this method,independent component analysis is introduced into feature extraction,and support vector machine is used to classification of ICA feature.Authors have done a lot of experiments to get the influence of the number of independent component parameters on the classifier.And authors compare it with support vector machine,and other face detection methods by doing some experiments.The experiment results show that this approach can achieve good detection effect.It is proved to be a very effective method.
Keywords:Independent Components Analysis(ICA)  Support Vector Machine(SVM)  learning  face detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号