首页 | 本学科首页   官方微博 | 高级检索  
     

基于卡尔曼滤波的神经网络修剪算法研究
引用本文:吴静,刘衍珩,吕荣. 基于卡尔曼滤波的神经网络修剪算法研究[J]. 计算机仿真, 2009, 26(10): 175-178,369
作者姓名:吴静  刘衍珩  吕荣
作者单位:吉林大学计算机科学与技术学院,吉林,长春,130012;吉林大学符号计算与知识工程教育部重点实验室,吉林,长春,130012;吉林大学计算机科学与技术学院,吉林,长春,130012;吉林大学符号计算与知识工程教育部重点实验室,吉林,长春,130012;吉林大学计算机科学与技术学院,吉林,长春,130012;吉林大学符号计算与知识工程教育部重点实验室,吉林,长春,130012
基金项目:教育部高校博士点基金(20060183043);;国家自然科学基金(60573128)
摘    要:传统的BP神经网络在应用的过程中,常常面临无法确定合适的网络节点问题。网络规模小,则运算时间长;而网络规模过大,容易产生过学习现象,影响泛化能力。在传统的BP神经网络学习的基础上,采用卡尔曼滤波算法对神经网络中的权值向量进行修剪,实现对神经网络结构的简化,提高泛化能力。它不同于以往的边修剪、边训练,而是在神经网络一次完整的学习完成之后,一次性修剪。方法在入侵检测数据集测试中表明,修剪比例较高,精确度好,修剪完成的网络能够很好地保持修剪前的测试识别率,提高了学习速度和泛化能力。

关 键 词:神经网络  修剪  泛化能力  卡尔曼滤波

Research on Pruning Algorithm in Neural Networks Based on Kalman Filter
WU Jing,,LIU Yan-heng,LV Rong. Research on Pruning Algorithm in Neural Networks Based on Kalman Filter[J]. Computer Simulation, 2009, 26(10): 175-178,369
Authors:WU Jing    LIU Yan-heng  LV Rong
Affiliation:1.College of Computer Science and Technology;Jilin University;Changchun Jilin 130012;China;2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education;Changchun Jilin 120012;China
Abstract:In the application of traditional BP neural networks,a problem often faced is how to determine the appropriate numbers of the neurons.If the scale of the network is too small,it will cause long training time.On the contrary,if the scale is too big,the networks will lead to over fitting which plays an important role to generalization ability of NN.In this paper,a Kalman Filter algorithm is applied to prune the weights of Neural Networks in order to improve the speed of learning and the generalization ability...
Keywords:Neural networks  Pruning  Generalization ability  Kalman filter  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号