首页 | 本学科首页   官方微博 | 高级检索  
     

增量式的多变量决策树构造算法研究
引用本文:常志玲,张晓玲. 增量式的多变量决策树构造算法研究[J]. 微机发展, 2011, 0(2): 90-93
作者姓名:常志玲  张晓玲
作者单位:洛阳师范学院信息技术学院;河南科技大学电子信息工程学院;
基金项目:河南省自然科学研究计划项目(2010A520030)
摘    要:针对增量数据集,结合粗糙集理论和多变量决策树的优点,给出了增量式的多变量决策树构造算法。该算法针对新增样本与已有规则集产生矛盾,即条件属性相匹配,而决策属性不匹配的情况,计算条件属性相对于决策属性的核,如果核不为空,则计算核相对于决策属性的相对泛化,根据不同的结果形成不同的子集,最终形成不同的决策树分支。该算法很好地避免了在处理增量数据集时,不断重构决策树。实例证明该算法的正确性,对处理小增量数据集具有良好的性能。

关 键 词:增量式学习  多变量决策树  粗糙集  相对泛化

Study of Building Incremental Multivariate Decision Tree
CHANG Zhi-ling,ZHANG Xiao-ling. Study of Building Incremental Multivariate Decision Tree[J]. Microcomputer Development, 2011, 0(2): 90-93
Authors:CHANG Zhi-ling  ZHANG Xiao-ling
Affiliation:CHANG Zhi-ling1,ZHANG Xiao-ling2(1.Academy of Information Technology,Luoyang Normal University,Luoyang 471022,China,2.Electronic & Information Engineering College of Henan University of Science and Technology,Luoyang 473000,China)
Abstract:In this paper,a new algorithm to build incremental multivariate decision tree is proposed.The advantages of the rough set theory and the multivariate decision tree are combined in this method.Aiming at the inconsistency between the new sample and the old sample,the core is computed.If the core is empty,the generalization between core and decision attribute will be computed,the different results will be the different branches of decision tree at last.The decision tree rebuilding is avoided in the algorithm a...
Keywords:incremental learning  multivariate decision tree  rough set  generalization  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号