首页 | 本学科首页   官方微博 | 高级检索  
     

基于高光谱数据和雷达融合的滑坡信息提取
引用本文:李小来,李海涛,杨世强,徐海章,王庆. 基于高光谱数据和雷达融合的滑坡信息提取[J]. 长江科学院院报, 2023, 40(1): 184-190. DOI: 10.11988/ckyyb.20210729
作者姓名:李小来  李海涛  杨世强  徐海章  王庆
作者单位:1.国网湖北省电力有限公司 检修公司,湖北 宜昌 443300; 2.长江大学 地球科学学院,武汉 430100
基金项目:国家电网湖北省电力有限公司科技项目(52152018002S)
摘    要:为了改进微地形滑坡遥感影像分类技术,从而提高微地形滑坡遥感信息提取的精度,采用湖北宜昌部分地区的无人机航拍高光谱影像(HSI)和激光雷达(LiDAR)数据作为研究数据源,并对高光谱和LiDAR数据进行融合,最后采用结合注意力模块(CBAM)的卷积神经网络(CNN)方法,对融合后的数据进行滑坡信息提取。研究表明,利用高光谱和雷达数据的优势,可以更准确地提取滑坡信息。

关 键 词:高光谱影像  激光雷达  数据融合  注意力模块  滑坡信息提取
收稿时间:2021-07-19
修稿时间:2021-12-14

Landslide Information Extraction by Fusion of Hyperspectral and Radar Data
LI Xiao-lai,LI Hai-tao,YANG Shi-qiang,XU Hai-zhang,WANG Qing. Landslide Information Extraction by Fusion of Hyperspectral and Radar Data[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1): 184-190. DOI: 10.11988/ckyyb.20210729
Authors:LI Xiao-lai  LI Hai-tao  YANG Shi-qiang  XU Hai-zhang  WANG Qing
Affiliation:1. Maintenance Company of State Grid Hubei Electric Power Co., Ltd., Yichang 443300, China; 2. School of Earth Sciences,Yangtze University, Wuhan 430100, China
Abstract:The aim of this research is to enhance the extraction accuracy by improving the classification of micro-terrain landslide remote sensing information. The landslide information in local areas of Yichang was extracted by using the method of Convolutional Neural Networks (CNN) combined with Convolutional Block Attention Module (CBAM) based on the fusion of Unmanned Aerial Vehicle (UAV) hyperspectral image (HSI) and Light Detection and Ranging (LiDAR) data. Results demonstrated that landslide information can be extracted with more accuracy based on the advantages of hyperspectral and radar data.
Keywords:hyperspectral image  LiDAR  data fusion  CBAM  landslide information extraction  
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号