首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of structural,morphological alterations,wettability characteristics and adhesion to enamel after various surface conditioning methods
Authors:Mutlu Özcan  Merita Sadiku
Affiliation:1. Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, University of Zurich, Zurich, Switzerland;2. Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, University of Zurich, Zurich, Switzerland
Abstract:Minimal invasive dental reconstructions and orthodontic appliances are bonded to enamel without removing the enamel with rotating instruments but the top layer of enamel may be partially aprismatic and impair adhesion. The objectives of this study were to investigate the effect of mechanical surface conditioning methods for removing enamel on its structural, morphological alterations, wettability characteristics, and adhesion of resin-based cement to the conditioned surfaces. Maxillary human incisors (N = 40, nquadrant = 160) were obtained and coronal sections were embedded in acrylic with their labial surfaces exposed. The teeth were randomly divided into four groups and the enamel surface of each tooth was divided into four quadrants. The surfaces were conditioned in a clockwise manner by one of the following methods: (1) Non-conditioned enamel acted as the control group (C); (2) Silicone-coated disk (Sof-Lex disc, Black, 3 M ESPE) (SD); (3) Diamond bur at slow speed (DB) and (4) Airborne particle abrasion (50 μm Al2O3, 2 bar, 5 s) (AA). Surface roughness was measured at each quadrant using a non-contact digital profilometer and contact angle measurements were performed using a goniometer. Enamel surfaces were then etched with 37% H3PO4 for 60 s and roughness and wettability measurements were repeated. The enamel surfaces in each quadrant received resin composite luting cement (Variolink II, Ivoclar Vivadent) incrementally in a polyethylene mold (diameter: 1 mm2; height: 4 mm) and photopolymerized. The specimens were stored in distilled water for 24 h at 37 °C until the testing procedures and then shear force was applied to the adhesive interface until failure occurred in a Universal Testing Machine (0.5 mm/min). Microshear bond (μSBS) was calculated by dividing the maximum load (N) by the bonding surface area of the resin cement. Representative enamel surfaces were analyzed under the scanning electron microscope (SEM) (x5000) to assess the surface morphology. Failure types were analyzed using optical microscope and SEM. Data (MPa) were analyzed using one-way ANOVA and Tukey`s test for each parameter and Linear model for group comparisons (α = 0.05). Surface conditioning method significantly affected the adhesion results (p < 0.001), surface roughness (p = 0.017), and contact angle (p < 0.001). Interaction terms were significant (p > 0.05). AA (338 ± 182) created significantly higher surface roughness compared to SD (308 ± 180) and DB (242 ± 197) (p < 0.05). After etching with 37% H3PO4, DB (307 ± 223) resulted in significantly lower roughness than those of SD (385 ± 173) and AA (414 ± 193) (p < 0.05). AA (40 ± 11) delivered significantly lower contact angle compared to those of SD (61 ± 9) and DB (59 ± 10). After etching with 37% H3PO4, AA (42 ± 10) and DB (50 ± 10) presented the lowest contact angle (p < 0.05). Mean μSBS results (MPa) showed significant difference between the experimental groups (p = 0.011) and were in descending order as follows: DB (20 ± 8)a?a b < C (12 ± 5)b. Failure types were predominantly mixed failure type between the enamel and the resin cement with more than half of the resin remained on the enamel surface (32 to 33 out of 40) in all groups. Cohesive failure in the enamel was not observed in any of the groups. SEM analysis showed that AA group leaves abundant particles on the enamel surface and after DB and AA, etching could not remove the particles completely and expose the enamel prisms.
Keywords:Adhesion  air-abrasion  enamel  surface conditioning  surface roughness  wettability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号