首页 | 本学科首页   官方微博 | 高级检索  
     


Depolarization-dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2
Authors:MP Revuelta  B Cantabrana  A Hidalgo
Affiliation:Departamento de Medicina, Facultad de Medicina, Oviedo, Spain.
Abstract:1. The effects of the flavonoids genistein (3-60 microM), kaempferol (3-60 microM) and quercetin (1-100 microM) on KCl (60 mM)-induced tonic contraction in rat uterus and their modifications with the inhibitor of cAMP-dependent protein kinases (TPCK, 3 microM), the inhibitor of ornithine decarboxylase alpha-difluoromethyl ornithine (DFMO), 10 mM] and the polyamine spermine (1 mM) have been assayed. The effects of the three flavonoids were also studied on the contraction elicited by CaCl2 (30 microM to 10 mM) on rat uterus incubated in medium lacking calcium and supplemented with 33, 60 or 90 mM of KCl. For comparison, the effects of the calcium channel blockers nifedipine and verapamil and the activator of adenylyl cyclase forskolin were assayed on contractions induced by KCl and CaCl2. 2. Genistein (IC50: 20.2 +/- 1.0 microM, n = 11), kaempferol (IC50: 10.1 +/- 0.8 microM, n = 8) and quercetin (IC50: 13.2 +/- 0.5 microM, n = 8) relaxed the tonic contraction induced by KCl (60 mM) in a concentration-dependent way. Verapamil (IC50: 70.1 +/- 5.8 nM, n = 7), nifedipine (IC50: 8.4 +/- 0.7 nM, n = 6) and forskolin (IC50: 0.62 +/- 0.08 microM, n = 14) also relaxed the KCl-induced contraction. TPCK (3 microM) significantly antagonized the effect of quercetin, kaempferol and forskolin (P < 0.01) but did not modify the effect of genistein. 3. Spermine (1 mM) increased the effects of genistein and verapamil and antagonized the effect of quercetin but did not modify those of kaempferol and forskolin. DFMO (10 mM) did not modify the effect of quercetin but increased that of genistein and antagonized those of kaempferol and forskolin. The addition of spermine (1 mM) plus DFMO (10 mM) antagonized the effect of quercetin. Spermine counteracted the effect of DFMO on forskolin but not on genistein. 4. KCl (33, 60 or 90 mM) did not produce contraction in calcium-free solution, but CaCl2 (30 microM to 10 mM) induced concentration-dependent contraction after depolarizing with KCl. The EC50 values for CaCl2 were: 0.74 +/- 0.08 (n = 12), 0.34 +/- 0.03 (n = 14) and 0.48 +/- 0.02 (n = 12) mM in a medium with 33, 60 or 90 mM of KCl, respectively. 5. Genistein (20 microM), kaempferol (10 microM), quercetin (15 microM), verapamil (70 nM), nifedipine (10 nM) and forskolin (0.5 microM) inhibited the concentration-response curve to CaCl2 in medium supplemented with 33, 60 or 90 mM of KCl. The effect of kaempferol was independent of the concentration of KCl in the incubation medium. However, the inhibitory effect of genistein on CaCl2-induced contraction was inversely related to the concentration of KCl in the medium. On the contrary, the effect of quercetin was directly related to the concentration of KCl in the medium. 6. The antagonism of verapamil, nifedipine and forskolin on CaCl2-induced contraction seems to be related to the degree of depolarization because increasing the KCl in the medium counteracted their effects. 7. Our results suggest that (1) cAMP contributes to the relaxant effects of quercetin and kaempferol on KCl (60 mM)-induced tonic contraction; (2) polyamines are involved in the relaxant effects of forskolin and kaempferol on KCl-induced tonic contraction but not on CaCl2-induced contraction in the depolarized uterus, and (3) the flavonoids assayed also possess a calcium antagonist action but show a different behavior toward the calcium channel blockers and the cAMP enhancer forskolin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号