首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and aggregation behavior of four types of different shaped PCL‐PEG block copolymers
Authors:Chengfei Lu  Sheng‐rong Guo  Yaqiong Zhang  Ming Yin
Abstract:Biodegradable, amphiphilic, linear (diblock and triblock) and star‐shaped (three‐armed and four‐armed) poly(ethylene glycol)‐block‐(ε‐caprolactone)] copolymers (PEG–PCL copolymers) were synthesized by ring‐opening polymerization of ε‐caprolactone (CL) with stannous octoate as a catalyst, in the presence of monomethoxypoly(ethylene glycol) (MPEG), poly(ethylene glycol) (PEG), three‐armed poly(ethylene glycol) (3‐arm PEG) or four‐armed poly(ethylene glycol) (4‐arm PEG) as an initiator, respectively. The monomer‐to‐initiator ratio was varied to obtain copolymers with various PEG weight fractions in a range 66–86%. The molecular structure and crystallinity of the copolymers, and their aggregation behavior in the aqueous phase, were investigated by employing 1H‐NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry, as well as utilizing the observational data of gel–sol transitions and aggregates in aqueous solutions. The aggregates of the PEG–PCL block copolymers were prepared by directly dissolving them in water or by employing precipitation/solvent evaporation technique. The enthalpy of fusion (ΔHm), enthalpy of crystallization (ΔHcrys) and degrees of crystallinity (χc) of PEG blocks in copolymers and the copolymer aggregates in aqueous solutions were influenced by their PEG weight fractions and molecular architecture. The gel–sol transition properties of the PEG–PCL block copolymers were related to their concentrations, composition and molecular architecture. Copyright © 2006 Society of Chemical Industry
Keywords:amphiphilic block copolymers  self‐aggregation  sol–  gel transition  DSC
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号