首页 | 本学科首页   官方微博 | 高级检索  
     


Thermo-fracture analysis of composite-aluminum bonded joints at low temperatures: Experimental and numerical analyses
Affiliation:1. UNIC, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;2. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal;1. Composites Entity, Vikram Sarabhai Space Centre, India;2. Department of Applied Mechanics, Indian Institute of Technology Madras, India;1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;2. Advanced Composites Laboratory, School of Mechanical and Materials Engineering, Washington State University Tri-Cities, 2710 Crimson Way, Richmond, WA 99354, USA
Abstract:Adhesive joints have found extensive applications in aerospace structures because of important advantages such as uniform stress distribution, thermal, acoustic and electrical insulation as well as capability of joining dissimilar materials. These joints in aerospace structures frequently experience severe low temperatures. Lack of experimental data in this field motivated the study of the fracture of adhesive joint at low temperatures in this paper. Fracture parameters of carbon-fibre-reinforced polymer-based composites (CFRP) and aluminum bonded joints were investigated in a temperature range of ?80 to +22 °C. In order to understand the mechanical behavior of different components of the bonded joint, firstly, the components (adhesive, composite, and aluminum) were characterized by conducting tensile tests. Subsequently, specimens of cracked bonded joint were tested at low temperatures in different loading modes (mode I, mode II, and mixed mode I/II). The finite element model of the bonded joint was developed in order to obtain the dimensionless functions of stress intensity factors at lower temperatures. The results showed that a reduction in temperature down to a particular value contributes to improved critical stress intensity factors, while any further reduction in the temperature tends to lower the critical stress intensity factors, eventually leading to decreased fracture energy absorption capacity of the structure. In the final section of this paper, a study on fracture surfaces and fracture mechanisms was performed via macroscopic and scanning electron microscopic (SEM) analyses.
Keywords:CFRP-Adhesive joint  Fracture mechanics  Low temperatures  Mixed mode test
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号