首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识引导的自适应动态多模态差分进化算法
引用本文:闫李,马佳慧,柴旭朝,岳彩通,于坤杰,梁静,瞿博阳. 基于知识引导的自适应动态多模态差分进化算法[J]. 控制与决策, 2023, 38(11): 3048-3056
作者姓名:闫李  马佳慧  柴旭朝  岳彩通  于坤杰  梁静  瞿博阳
作者单位:中原工学院 电子信息学院,郑州 453000;郑州大学 电气工程学院,郑州 453000
基金项目:国家自然科学基金项目(62103456,61976237,61922072,61876169);河南省高校科技创新团队支持计划项目(22IRTSTHN015);河南省自然科学基金项目(202300410511,212300410321);中原英才计划项目(ZYQR201810162);河南省高等学校青年骨干教师培养计划项目(2021GGJS111).
摘    要:为充分利用问题求解过程知识,提升动态多模态优化算法的计算资源利用效率,提出一种基于知识引导的自适应动态多模态差分进化算法.首先,利用自组织映射神经网络实现种群自聚类,形成稳定的小生境;然后,通过对种群全局知识和个体邻域知识的综合学习,设计一种基于知识引导的自适应差分进化算法,在对种群进化状态进行实时监测和分析的基础上,逐层递进地引导不同种群个体自适应地选择最符合当前进化需求的变异方式,提升种群搜索效率,平衡种群多样性与收敛性;最后,针对问题动态特性,设计一种基于历史动态过程知识引导的自适应动态响应机制,通过对历史寻优经验的自适应学习,预测生成新环境下的潜在精英个体,引导种群实现精准快速的多峰定位.实验结果表明,所提出算法能够有效解决动态多模态优化问题,且在不同动态环境设置下其求解性能均优于对比算法.

关 键 词:多模态优化  动态优化  差分算法  知识引导

Adaptive dynamic multimodal differential evolution algorithm based on knowledge guidance
YAN Li,MA Jia-hui,CHAI Xu-zhao,YUE Cai-tong,YU Kun-jie,LIANG Jing,QU Bo-yang. Adaptive dynamic multimodal differential evolution algorithm based on knowledge guidance[J]. Control and Decision, 2023, 38(11): 3048-3056
Authors:YAN Li  MA Jia-hui  CHAI Xu-zhao  YUE Cai-tong  YU Kun-jie  LIANG Jing  QU Bo-yang
Affiliation:School of Electronic and Information,Zhongyuan University of Technology,Zhengzhou 453000,China;School of Electrical Engineering,Zhengzhou University,Zhengzhou 453000,China
Abstract:To fully use the knowledge of problem-solving process and improve the computational resource utilization efficiency of dynamic multimodal optimization algorithms, an adaptive dynamic multimodal differential evolution algorithm based on knowledge guidance is proposed. Firstly, a self-organizing mapping(SOM) neural network is used to realize the self-clustering of population and form some stable niches. Secondly, through the comprehensive learning of the population global knowledge and the individual neighborhood knowledge, a knowledge-guided adaptive differential evolution(KADE) algorithm is designed to layer by layer guide the individuals to adaptively choose the mutation strategies that best meets their evolutionary demands. The proposed algorithm can improve the search efficiency of population and balance the diversity and convergence. Finally, when a change happens, an adaptive dynamic response strategy based on the historical experience learning is proposed to predict the positions of the elite individuals in the new environment to achieve a fast convergence. Experimental results show that the proposed SOM-KADE shows superior performance compared with the state-of-the-art algorithms.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号