首页 | 本学科首页   官方微博 | 高级检索  
     


Monolithic 3D neuromorphic computing system with hybrid CMOS and memristor-based synapses and neurons
Affiliation:1. Research-Educational Center “Nanotechnology”, Tyumen State University, Volodarskogo st. 6, 625003 Tyumen, Russia;2. Nanodevices LTD, Voronezh, Russia;1. Departamento de Estadística e Investigación Operativa. Universidad de Granada. Facultad de Ciencias. Avd. Fuentenueva s/n, 18071 GRANADA, Spain;2. Departamento de Electrónica y Tecnología de Computadores. Universidad de Granada. Facultad de Ciencias. Avd. Fuentenueva s/n, 18071 GRANADA, Spain
Abstract:Because of fabrication compatibility to current semiconductor technology, three-dimensional integrated circuits (3D-ICs) offer promising near-term solutions for maintaining Moore’s Law. 3D-ICs proffer high system speeds, massively parallel processing, low power consumption, and their high densities result in small footprints. In this paper, a novel 3D neuromorphic IC architecture which combines monolithic 3D integration and a synaptic array based on vertical resistive random-access memory structure (V-RRAM) is proposed. To analyze the electrical characteristics of the proposed synaptic array, a concise equivalent circuit model of the system is developed, and analytical calculations for each parameter of the equivalent circuit are provided. Moreover, a novel signal intensity encoding neuron design that can directly convert analog signal into a spiking waveform sequence is proposed and analyzed. A feasible 3D neuromorphic computing architecture is demonstrated. Applying the monolithic 3D integration technology on neuromorphic computing system hardware implementation can reduce the power consumption by 50%, and shrink die areas by 35%.
Keywords:Neurmorphic computing  Vertical RRAM structure  Memristor  SPICE model  Monolithic 3D integration  Signal intensity encoding neuron
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号