A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses |
| |
Authors: | Julián Mestre |
| |
Affiliation: | (1) Department of Computer Science, University of Maryland, College Park, MD 20742, USA |
| |
Abstract: | We study the partial vertex cover problem. Given a graph G=(V,E), a weight function w:V→R +, and an integer s, our goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the well-known vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(nlog n+m) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be used to get a 2-approximation for a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity k u . A solution consists of a function x:V→ℕ0 and an orientation of all but s edges, such that the number of edges oriented toward vertex u is at most x u k u . Our objective is to find a cover that minimizes ∑ v∈V x v w v . This is the first 2-approximation for the problem and also runs in O(nlog n+m) time. Research supported by NSF Awards CCR 0113192 and CCF 0430650, and the University of Maryland Dean’s Dissertation Fellowship. |
| |
Keywords: | Approximation algorithms Vertex cover Primal-dual algorithms |
本文献已被 SpringerLink 等数据库收录! |
|