首页 | 本学科首页   官方微博 | 高级检索  
     


Stress softening in carbon black-reinforced vulcanizates. Strain rate and temperature effects
Authors:G Kraus  C W Childers  K W Rollmann
Abstract:Stress softening of carbon black-reinforced butadiene-styrene rubber was studied as a function of the rate and temperature of the original tensile deformation. To a good approximation, stress softening depends on the product of the extension rate and a temperature function which is analytically well represented by the familiar Williams-Landel-Ferry relationship. When the elongation of the original deformation is also varied, a good correlation is obtained between stress softening and the maximum stress attained in the original extension, irrespective of the particular combination of strain, strain rate and temperature used to achieve this stress. Variables which tend to increase the stiffness of the vulcanizate, such as increased degree of crosslinking or carbon black chain structure, also increase stress softening; dilution by plasticizers decreases it. Prestressing at high strain rates and low temperatures affects the stress–strain curve of the softened vulcanizates beyond the elongation of the original extension. Connections are established between stress softening and viscoelastic and failure behavior. The evidence presented favors the contribution of several mechanisms to the general phenomenon of stress softening. These are thixotropy of transient filler structures, network chain rupture, and breakage of “permanent” filler structure. The latter appears to be most important at high strain rates, low temperatures, and with highly reticulated “structure” blacks.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号