首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Study on the Effect of Cross-Flow on Turbulent Flow and Heat Transfer Characteristics Under Normal and Oblique Semi-confined Impinging Slot Jets
Abstract:Abstract

Impinging jets are commonly used in industrial dryers and electronics chip cooling. Since in industrial practice it is necessary to use multiple jets, the interaction between jets can have important effect on their heat transfer performance. Hence, the study of cross-flow caused by the spent flow of upstream jets is obviously significant. In this study, a computational fluid dynamics simulation was carried out of the flow and heat transfer characteristics for a single semi-confined turbulent slot jet of air impinging normally or obliquely into an imposed air cross-flow of the same or different temperature. The standard k?ε and the Reynolds stress models were used. Effects of the various flow parameter (e.g., jet-to-cross-flow mass ratio) and geometric parameters (e.g., nozzle-to-target spacing and jet angle) were evaluated at a fixed Reynolds number (11,000 and 12,000) for equal and unequal temperatures of the jet and cross-flow. Results indicate the significant degradation of the impingement heat transfer rates due to cross-flow and a relatively minor influence of the temperature difference between the jet and cross-flow over the ranges of parameters studied. Both the turbulence models produced comparable Nusselt number distributions along the impingement surface.
Keywords:Impingement  Jet inclination angle  Heat transfer coefficient  Nusselt number
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号