首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of Polymeric Microcapsules: Formulation Studies
Abstract:Air-filled microcapsules were prepared by freeze-drying different oil-in-water emulsions containing biodegradable polyester as the wall-forming material. The aim of this work was to find an acceptable formulation with respect to the microcapsule suspension and the stability of the emulsion during the production process. The influence of various formulation parameters (concentrations of mannitol, polymer, and surfactant; pH; oil-in-water phase ratio) was investigated in a factorial design. The results were treated by ordinary least-square (OLS) regression and partial least-square regression (PLSR). In a previous work, air-filled microcapsules were successfully made using human serum albumin as the surfactant in the emulsion . In the present work, a new block copolymer based on poly(ethylene glycol) (PEG) was implemented as the surfactant to replace human serum albumin. It was found that the new block copolymer is a suitable replacement for human serum albumin. The concentration of the polymer in water and the concentration of the surfactant in the oil phase and the interaction between these variables had a significant influence on the stability of the emulsion at 60°C. A surfactant concentration of approximately 2% (w/v) in water was necessary when the concentration of the wall-forming polymer was below 5% (w/v) in (-)-camphene. The concentration of the polymer in the oil phase influenced the yield, measured as the volume concentration of particles in suspension per milligram of polymer added and as acoustic effect per milligram of polymer. Low levels of polymer concentration in (-)-camphene (<5% w/v) gave the highest yield. Excess polymer in the oil phase did not form microcapsules, but precipitated in the suspension or was included in the wall of the microcapsules. Addition of mannitol protected the microcapsules from being destroyed during freeze-drying and resulted in freeze-dried products with few cracks, little shrinkage, and higher suspension yield.
Keywords:Emulsion  Formulation  Microcapsules  Statistical design  Ultrasound contrast agent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号