首页 | 本学科首页   官方微博 | 高级检索  
     

基于透视强度影像特征的点云配准算法
引用本文:东正兰,王永菊,龚克. 基于透视强度影像特征的点云配准算法[J]. 工程勘察, 2021, 49(3): 54-58
作者姓名:东正兰  王永菊  龚克
作者单位:青海省测绘质量监督检验中心,西宁810001;青海省基础测绘院,西宁810001
摘    要:针对大规模测绘项目,靶标的布设和定位通常耗费大量人力。本文提出基于透视强度影像特征的点云配准算法,对于站—站配准,首先利用点云数据生成待配准点云的透视强度影像;其次,从强度影像中提取角点,通过特征匹配的方法确定同名点,并将同名点的像点坐标转换为物方三维坐标;最后,依据同名点的三维坐标,基于奇异值分解方法估计站—站之间的配准参数,并在配准参数解算过程中使用随机抽样一致算法剔除同名点粗差。通过实验结果验证该方法的稳健性和有效性。

关 键 词:点云配准  透视强度影像  随机抽样一致算法  地面激光扫描

Point cloud registration algorithm based on the characteristics of perspective intensity image
Dong Zhenglan,Wang Yongju,Gong Ke. Point cloud registration algorithm based on the characteristics of perspective intensity image[J]. Geotechnical Investigation & Surveying, 2021, 49(3): 54-58
Authors:Dong Zhenglan  Wang Yongju  Gong Ke
Affiliation:(Qinghai Provincial Surveying and Mapping Quality Supervision and Inspection Center,Xining 810001,China;Qinghai Provincial Basic Surveying and Mapping Institute,Xining 810001,China)
Abstract:For large-scale surveying and mapping projects,the placement and positioning of targets usually consume a lot of labor. This paper proposes a point cloud registration algorithm based on perspective intensity image features. For station-to-station registration,firstly,perspective intensity images of the point cloud to be registered are generated by exploiting point cloud data;secondly,we extract the corner points from the intensity image and determine the corresponding points through the feature matching method and convert the image point coordinates of the corresponding points into the object-side 3 D coordinates;Finally,according to the three-dimensional coordinates of the corresponding points,the registration parameters between the stations are estimated based on the singular value decomposition method,and a random sampling consensus algorithm is used to eliminate the gross error of the corresponding points during the solution of the registration parameters. The experimental results verify the robustness and effectiveness of the method.
Keywords:point cloud registration  perspective intensity image  random sample consensus  ground laser scanning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号