首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合KPLS-FDA的过程监控和质量预报方法
引用本文:石怀涛,刘建昌,谭帅,张羽,王洪海. 基于混合KPLS-FDA的过程监控和质量预报方法[J]. 控制与决策, 2013, 28(1): 141-146
作者姓名:石怀涛  刘建昌  谭帅  张羽  王洪海
作者单位:1. 东北大学 信息科学与工程学院,沈阳 110819
2. 沈阳建筑大学 交通与机械工程学院,沈阳 110168
基金项目:国家自然科学基金项目(50974145);辽宁省科技攻关计划项目(2009216007)
摘    要:提出一种基于核偏最小二乘(KPLS)与费舍尔判别分析(FDA)相结合的过程监控和质量预报方法—–混合 KPLS-FDA 方法.首先,利用 KPLS 提取过程数据的非线性特征,使用 FDA 建立 KPLS 的内部模型;然后,求出满足最大分离度的核 Fisher 特征向量和判别向量来实现状态监测,若系统运行正常,则根据 KPLS 回归模型预报产品的质量,否则利用 Fisher 相似度系数确定故障类型;最后,通过轧钢过程的仿真研究验证了混合 KPLS-FDA 方法的有效性.

关 键 词:核偏最小二乘  费舍尔判别分析  非线性特征提取  过程监控  质量预报
收稿时间:2011-10-18
修稿时间:2012-03-01

Process monitoring and quality prediction method based on hybrid
KPLS-FDA
SHI Huai-tao,LIU Jian-chang,TAN Shuai,ZHANG Yu,WANG Hong-hai. Process monitoring and quality prediction method based on hybrid
KPLS-FDA[J]. Control and Decision, 2013, 28(1): 141-146
Authors:SHI Huai-tao  LIU Jian-chang  TAN Shuai  ZHANG Yu  WANG Hong-hai
Affiliation:1(1.College of Information Science and Technology,Northeastern University,Shenyang 110819,China;2.College of Traffic and Mechanical Engineering,Shenyang Jianzhu University,Shenyang 110168,China.)
Abstract:

A process monitoring and quality prediction method based on combining kernel partial least squares (KPLS)
with Fisher discriminant analysis (FDA), hybrid KPLS-FDA, is proposed. Firstly, the nonlinear feature of process data is
extracted by using KPLS, the internal model of KPLS is established by using FDA, and the optimal feature vector and the
discriminant vector which satisfies maximal separation degree are obtained for condition monitoring. If the process is under
normal condition, the regression model of KPLS is further used for quality prediction. Otherwise, the similar degree in the
fault feature direction is used for fault diagnosis. Finally, the simulation research for steel rolling process is performed to
show its accuracy and effectiveness in fault diagnosis and quality prediction.

Keywords:kernel partial least squares  Fisher discriminant analysis  nonlinear feature extraction  process monitoring  quality prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号