首页 | 本学科首页   官方微博 | 高级检索  
     

基于强跟踪滤波器的MACA-MIE 模型及跟踪算法
引用本文:周政 刘进忙. 基于强跟踪滤波器的MACA-MIE 模型及跟踪算法[J]. 控制与决策, 2013, 28(1): 100-104
作者姓名:周政 刘进忙
作者单位:空军工程大学 防空反导学院,西安 710051
基金项目:国家自然科学青年基金项目(61102109);陕西省自然科学基金项目(2010JM8013)
摘    要:结合自适应常加速模型(ACA)、改进输入估计(MIE)和强跟踪滤波器,提出一种新的自适应目标跟踪模型和算法.该算法通过扩展 ACA 模型状态矢量和改进状态噪声协方差调整方法,利用 MIE 和强跟踪滤波器,实现了机动加速度方差和状态预测协方差依据残差信息的实时完全自适应调整,在缺乏目标加速度先验知识的情况下,能够实时高精度跟踪目标突变状态、弱机动和非机动状态.仿真实验表明,相比 ACA 模型和 MIE,该算法具有更好的机动状态和非机动状态跟踪性能.

关 键 词:机动目标跟踪  自适应常加速模型  改进输入估计  卡尔曼滤波  强跟踪滤波器
收稿时间:2011-08-26
修稿时间:2011-12-12

MACA-MIE model and tracking algorithm based on strong tracking filtera
ZHOU Zheng,LIU Jin-mang. MACA-MIE model and tracking algorithm based on strong tracking filtera[J]. Control and Decision, 2013, 28(1): 100-104
Authors:ZHOU Zheng  LIU Jin-mang
Affiliation:(Institute of Air Denfense and Anti-missile,Air Force Engineering University,Xi’an 710051,China.)
Abstract:

A new adaptive target tracking algorithm is proposed based on adaptive constant accelaraion(ACA) model,
modified input estimation(MIE) and strong tracking filter. By extending ACA model state vector and improving adjusting
method of state noise covariance, the proposed algorithm can adjust the accelaration variance and the state-estimation error
covariance to the change of filtering residual thorough adaptively and timely under the support of MIE and strong tracking
filter. The proposed algorithm is able to track the state of mutation, low maneuver and non-maneuver accurately in real time
when lacking the information on the acceleration. The simulation shows that the proposed algorithm has better performance
than ACA model and MIE in scenarios of maneuver and non-maneuver.

Keywords:maneuvering target tracking  adaptive constant accelaration model  modified input estimation  Kalman filter  strong tracking filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号