首页 | 本学科首页   官方微博 | 高级检索  
     

一类具有时滞和非线性发生率的SIRS传染病模型稳定性与Hopf分岔分析
引用本文:陈方方,洪灵. 一类具有时滞和非线性发生率的SIRS传染病模型稳定性与Hopf分岔分析[J]. 动力学与控制学报, 2014, 12(1): 79-85
作者姓名:陈方方  洪灵
作者单位:西安交通大学,机械结构强度与振动国家重点实验室,西安 710049
基金项目:国家自然科学基金资助项目(11172224)
摘    要:研究了一类具有时滞及非线性特性发生率的SIRS传染病模型,首先利用特征值理论分析了无病平衡点和地方病平衡点的局部稳定性;并以时滞τ作为分岔参数,分析了模型的Hopf分岔行为,运用中心流形定理和规范型理论给出了分岔方向及分岔周期解稳定性的计算公式;最后,数值模拟验证了理论分析结果.

关 键 词:稳定性  时滞  非线性发生率  阶段结构  Hopf分岔

Stability and hopf bifurcation analysis of a delayed sirs epidemic model with nonlinear saturation incidence
Chen Fangfang and Hong Ling. Stability and hopf bifurcation analysis of a delayed sirs epidemic model with nonlinear saturation incidence[J]. Journal of Dynamics and Control, 2014, 12(1): 79-85
Authors:Chen Fangfang and Hong Ling
Affiliation:Chen Fangfang Hong Ling (State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi'an 710049, China)
Abstract:An SIRS epidemic model with nonlinear saturation incidence rate and time delay was investigated. By analyzing the corresponding characteristic equations, the local stability of disease-free equilibrium and endemic equilibrium was discussed. The bifurcation property was obtained as the time delay passed through a critical value. Applying the center manifold argument and normal form theory, some local bifurcation results were obtained and the formulas for determining the bifurcation direction and stability of the bifurcated periodic solution were derived. Numerical simulations were presented to illustrate the theoretical analysis.
Keywords:stability  time delay  nonlinear incidence rate  stage structure  Hopf bifurcation
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《动力学与控制学报》浏览原始摘要信息
点击此处可从《动力学与控制学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号