Using targeted Bayesian network learning for suspect identification in communication networks |
| |
Authors: | A. Gruber I. Ben-Gal |
| |
Affiliation: | 1.Department of Industrial Engineering,Tel Aviv University,Tel Aviv,Israel |
| |
Abstract: | This paper proposes a machine learning application to identify mobile phone users suspected of involvement in criminal activities. The application characterizes the behavioral patterns of suspect users versus non-suspect users based on usage metadata such as call duration, call distribution, interaction time preferences and text-to-call ratios while avoiding any access to the content of calls or messages. The application is based on targeted Bayesian network learning method. It generates a graphical network that can be used by domain experts to gain intuitive insights about the key features that can help identify suspect users. The method enables experts to manage the trade-off between model complexity and accuracy using information theory metrics. Unlike other graphical Bayesian classifiers, the proposed application accomplishes the task required of a security company, namely an accurate suspect identification rate (recall) of at least 50% with no more than a 1% false identification rate. The targeted Bayesian network learning method is also used for additional tasks such as anomaly detection, distinction between “relevant” and “irrelevant” anomalies, and for associating anonymous telephone numbers with existing users by matching behavioral patterns. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|