首页 | 本学科首页   官方微博 | 高级检索  
     


13.7% Efficiency Small‐Molecule Solar Cells Enabled by a Combination of Material and Morphology Optimization
Authors:Qihui Yue  Hao Wu  Zichun Zhou  Ming Zhang  Feng Liu  Xiaozhang Zhu
Abstract:Compared with the quick development of polymer solar cells, achieving high‐efficiency small‐molecule solar cells (SMSCs) remains highly challenging, as they are limited by the lack of matched materials and morphology control to a great extent. Herein, two small molecules, BSFTR and Y6, which possess broad as well as matched absorption and energy levels, are applied in SMSCs. Morphology optimization with sequential solvent vapor and thermal annealing makes their blend films show proper crystallinity, balanced and high mobilities, and favorable phase separation, which is conducive for exciton dissociation, charge transport, and extraction. These contribute to a remarkable power conversion efficiency up to 13.69% with an open‐circuit voltage of 0.85 V, a high short‐circuit current of 23.16 mA cm?2 and a fill factor of 69.66%, which is the highest value among binary SMSCs ever reported. This result indicates that a combination of materials with matched photoelectric properties and subtle morphology control is the inevitable route to high‐performance SMSCs.
Keywords:energy loss  morphology  nonfullerene acceptors  power conversion efficiency  small‐molecule solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号