首页 | 本学科首页   官方微博 | 高级检索  
     


Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record‐High Thermoelectric Performance in Chalcopyrite
Authors:Jian Zhang  Lulu Huang  Chen Zhu  Chongjian Zhou  Bushra Jabar  Jimin Li  Xiaoguang Zhu  Ling Wang  Chunjun Song  Hongxing Xin  Di Li  Xiaoying Qin
Abstract:Chalcopyrite compound CuGaTe2 is the focus of much research interest due to its high power factor. However, its high intrinsic lattice thermal conductivity seriously impedes the promotion of its thermoelectric performance. Here, it is shown that through alloying of isoelectronic elements In and Ag in CuGaTe2, a quinary alloy compound system Cu1?xAgxGa0.4In0.6Te2 (0 ≤ x ≤ 0.4) with complex nanosized strain domain structure is prepared. Due to strong phonon scattering mainly by this domain structure, thermal conductivity (at 300 K) drops from 6.1 W m?1 K?1 for the host compound to 1.5 W m?1 K?1 for the sample with x = 0.4. As a result, the optimized chalcopyrite sample Cu0.7Ag0.3Ga0.4In0.6Te2 presents an outstanding performance, with record‐high figure of merit (ZT) reaching 1.64 (at 873 K) and average ZT reaching 0.73 (between ≈300 and 873 K), which are ≈37 and ≈35% larger than the corresponding values for pristine CuGaTe2, respectively, demonstrating that such domain structure arising from isoelectronic multielement alloying in chalcopyrite compound can effectively suppress its thermal conductivity and elevate its thermoelectric performance remarkably.
Keywords:chalcopyrite  CuGaTe2  domain structure  thermoelectric materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号